
Lab 2 Due Date: See Blackboard

Source File: ~/2305/lab02.(C|CPP|cpp|c++|cc|cxx|cp)

Input: Under control of main function
Output: Under control of main function
Value: 2

Create a class called Rational for performing various operations with fractions. The specification of
the class will be provided. Your task will be to provide the implementation. A main program for testing
your implementation will also be provided.

Use a two-element array of ints to represent the private data of the class—the numerator and the
denominator. If the array is declared as

int r[2];

use r[0] to represent the numerator and r[1] the denominator. The implementation should provide two
constructors: a default constructor that initializes the numerator to zero and the denominator to one and
a second constructor that takes two arguments (the first argument should be stored in the numerator and
the second in the denominator). The constructors should not store the rational number in reduced form.
Additional public member functions include:

• “Set” functions for setting the numerator and denominator. The setDenominator function should check
its argument for validity. If the function receives an argument equal to zero (0), the function should set
the denominator to one (1).

• “Get” functions for getting the numerator and denominator.

• Reduction of a Rational to lowest terms. Also, reduce should modify the denominator of a Rational

with a zero numerator to be one. Further, a negative Rational should ensure that the numerator is
negative and the denominator is positive. Rationals having both numerator and denominator negative
should be modified such that both numerator and denominator are positive.

If u and v are integers, not both zero, we say that their greatest common divisor, gcd(u, v), is the
largest positive integer that evenly divides both u and v. When u and v are both zero, every integer evenly
divides zero, so it is convenient to set gcd(0, 0) = 0. When either u or v is zero, define gcd(u, 0) = |u| and
gcd(0, v) = |v|. Provide the implementation of this function as a private member of the Rational class.

A header file is shown in Figure 1, a sample main function for testing your implementation is shown in
Figure 2, a sample data file is shown in Figure 3, and a sample execution sequence is shown in Figure 4. To
use the Makefile as distributed in class, add a target of lab02 to targets2srcfiles.

1 #ifndef LAB02_H
2 #define LAB02_H
3

4 using namespace std;
5

6 class Rational
7 {
8 public:
9 Rational(); // default constructor

10 Rational(int num, int denom); // additional constructor
11 void setNumerator(int num); // set numerator to num
12 void setDenominator(int denom); // set denominator to denom
13 int getNumerator() const; // return numerator
14 int getDenominator() const; // return denominator
15 void reduce(); // Reduce to lowest terms and
16 // normalize

Figure 1. /usr/local/2305/include/lab02.h (Part 1 of 2)

CS 2305 — Data Structures and Algorithms Page 1

Lab 2 Due Date: See Blackboard

17 private:
18 int r[2]; // r[0] represents numerator
19 // r[1] represents denominator
20 int gcd(int m, int n) const; // returns the gcd of m and n
21 };
22

23 #endif

Figure 1. /usr/local/2305/include/lab02.h (Part 2 of 2)

1 #include <lab02.h>
2 #include <iostream>
3 #include <cstdlib>
4

5 using namespace std;
6

7 int main()
8 {
9 int n, d;

10 Rational first(1, -2), second(-3, 0), third;
11

12 cout << "first = " << first.getNumerator() << ’/’ << first.getDenominator()
13 << endl;
14 cout << "second = " << second.getNumerator() << ’/’
15 << second.getDenominator() << endl;
16 cout << "third = " << third.getNumerator() << ’/’ << third.getDenominator()
17 << endl;
18

19 while (cin >> n >> d)
20 {
21 third.setNumerator(n);
22 third.setDenominator(d);
23 cout << "Before Reduce() third = "
24 << third.getNumerator() << ’/’ << third.getDenominator();
25 third.reduce();
26 cout << " After Reduce() third = "
27 << third.getNumerator() << ’/’ << third.getDenominator() << endl;
28 }
29

30 return EXIT_SUCCESS;
31 }

Figure 2. /usr/local/2305/src/lab02main.C

Page 2 CS 2305 — Data Structures and Algorithms

Lab 2 Due Date: See Blackboard

1 -3 4 3 4
2 3 -4 -3 -4
3 25 45 8 99
4 1 0 2 0
5 129 6579 1935 249
6 1331 1651 2301 1079
7 3 1260 6 198
8 43 1935 207 6579
9 5 7 -25 -35

10 -83 1651 127 -1079
11 1079 1651

Figure 3. /usr/local/2305/data/02/01.dat

1 2305-> cp /usr/local/2305/src/lab02main.C .
2 2305-> make lab02
3 g++ -g -Wall -c lab02main.C -I/usr/local/2305/include -I.
4 g++ -g -Wall -c lab02.C -I/usr/local/2305/include -I.
5 g++ -o lab02 lab02main.o lab02.o -L/usr/local/2305/lib -lm -lbits
6 2305-> cat /usr/local/2305/data/02/01.dat | lab02
7 first = 1/-2
8 second = -3/1
9 third = 0/1

10 Before Reduce() third = -3/4 After Reduce() third = -3/4
11 Before Reduce() third = 3/4 After Reduce() third = 3/4
12 Before Reduce() third = 3/-4 After Reduce() third = -3/4
13 Before Reduce() third = -3/-4 After Reduce() third = 3/4
14 Before Reduce() third = 25/45 After Reduce() third = 5/9
15 Before Reduce() third = 8/99 After Reduce() third = 8/99
16 Before Reduce() third = 1/1 After Reduce() third = 1/1
17 Before Reduce() third = 2/1 After Reduce() third = 2/1
18 Before Reduce() third = 129/6579 After Reduce() third = 1/51
19 Before Reduce() third = 1935/249 After Reduce() third = 645/83
20 Before Reduce() third = 1331/1651 After Reduce() third = 1331/1651
21 Before Reduce() third = 2301/1079 After Reduce() third = 177/83
22 Before Reduce() third = 3/1260 After Reduce() third = 1/420
23 Before Reduce() third = 6/198 After Reduce() third = 1/33
24 Before Reduce() third = 43/1935 After Reduce() third = 1/45
25 Before Reduce() third = 207/6579 After Reduce() third = 23/731
26 Before Reduce() third = 5/7 After Reduce() third = 5/7
27 Before Reduce() third = -25/-35 After Reduce() third = 5/7
28 Before Reduce() third = -83/1651 After Reduce() third = -83/1651
29 Before Reduce() third = 127/-1079 After Reduce() third = -127/1079
30 Before Reduce() third = 1079/1651 After Reduce() third = 83/127
31 2305->

Figure 4. Commands to Compile, Link, & Run Lab 02

CS 2305 — Data Structures and Algorithms Page 3

